

The $PLPAK^{TM}$

The Pile-Pile/Soil interactions (P-PPAK) MANUAL

PLPAK[™] Version 2.00

The Advanced Single-Floor (Foundation) Package

Copyright © 2000-2022 https://www.plpak.com

E-mail: plpak@be4e.com

Disclaimer

Considerable time, effort and expense have gone into the development and documentation of the PLPAKTM software. The PLPAKTM software has been thoroughly tested and used. The PLPAKTM software should be used by engineers with good understanding of concrete behavior, pre-stressing and structural mechanics. The user accepts and understands that no warranty is expressed or implied by the developers or the distributors on the accuracy or the reliability of the PLPAKTM software. The user must explicitly understand the assumptions of the PLPAKTM software and must independently verify the results produced by the PLPAKTM software.

Copyright

Copyright © BE4E.com, 2000-2022 All rights reserved.

The PLPAKTM, PLGenTM, PLViewTM, PLCoreManTM, PLPostTM, PTPAKTM, PLTM, PL.EXETM are registered trademarks of BE4E.com.

The computer program PLPAKTM and all associated documentation are proprietary and copyrighted products. Worldwide rights of ownership rest with BE4E.com.

Unlicensed use of these programs or reproduction of documentation in any form, without prior written authorization from BE4E.com is explicitly prohibited.

No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior explicit written permission of the BE4E.com.

Further information and copies of this documentation may be obtained from:

<u>Technical director:</u> Youssef F. Rashed, PhD Department of structural engineering, Cairo University, Egypt.

e-mail: <u>plpak@be4e.com</u> web: <u>https://www.plpak.com</u> The P-PPAK is an add-in tool to the PLPAK that allows simulation of pile-pile/soil interactions effects underneath piled rafts.

	Piles DOFs	Soil DOFs
Piles DOFs	P-P interactions (1)	P-S interactions (3)
Soil DOFs	S-P interactions (3)	S-S interactions (2)

P-PPAK consider three types of interaction effects:

1- Consider Pile-pile interaction effects (P-P). These interaction effects could be considered using elastic approach, load transfer approach or user field measurements interaction factors. In case of multi-layered soil, these interactions are considered using three different approach:

a- Average soil young's modulus (E_{avg}) between two points each has its layer's young's modulus E.

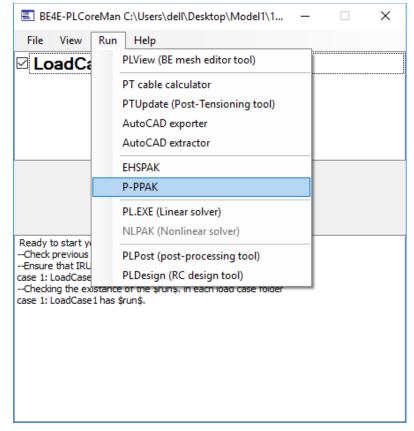
b- Equivalent soil young's modulus (E_{equ}) for all layers.

c- Modified soil young's modulus (E_{mod}) using Poulos and LEE modifications.

2- Consider soil-soil interaction effects (S-S). These interaction effects could be considered using EHSPAK.

3- Consider Pile-soil interaction effects (P-S). These interaction effects could be considered using Mindlin's solution. Also, in case of multi-layered soil, the same three approaches in (1) are used.

For more clarification, The P-PPAK is described using simple two examples. For different input files structures see appendix 2.


Problem 1:

This problem is 10×10 m piled raft with thickness 0.8 m supported on four piles each 0.5 m radius subjected to its own weight.

1- Generate Gen model.

File View Tools Define Help	+++ ## TAX Coordinates Divisions Loa	ads 🗐 3D View : Materials Load Cases Model	Info Points table	
			Run Select Edit Draw Segments Points Beams	
		,	· · · · · · · · · · · · · · · · · · ·	
		Slab:		
		Area: 100 m2 Material: Concrete		
		Distibuted Load: 0 t/m2		
		Thickness : 0.8 m		
	ľ –			

- 2- Run the problem from PLGen or load it from PLCoreMan.
- 3- From PLCoreMan run P-PPAK to extract pile-pile stiffness in (PL\$MATK\$.-4).

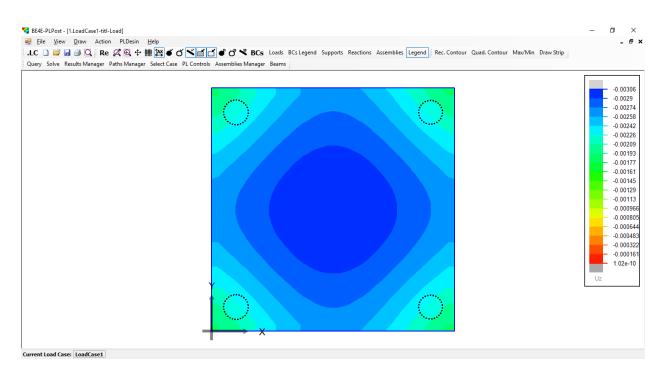
💼 BE4E - P-PPAK		-		х
File name: C:\Users\dell\Desktop\Model1\1	I.LC		Open (.LC) F	ile
Interaction input file:			Browse	
Pile-Pile factors file:	Browse	Pile-Pile and Pile-Soil factors	do not work	
Pile-Soil factors file:	Browse	with Poulos nor Randolph	methods.	
Soil Properties file:			Browse	
Interaction Input and Solution	n log	Soil Properties log		
Piles Editor		Run P-P	Close	

a. Load interaction input file of the problem (File different structures see appendix 1).

💼 ве4е - Р-РРАК				-		×
File name: C:\Users\	dell\Desktop\Model1\1.LC				Open (.LC)) File
Interaction input file:	C:\Users\dell\Desktop\Model1\Input		Browse	:		
Pile-Pile factors file:	C:\Users\dell\Desktop\Model1\A	Browse	Pile-Pile and Pile-Soil fa			
Pile-Soil factors file:		Browse	with Poulos nor Rar	ndolph m	ethods.	
Soil Properties file:					Browse	2
Interac	tion Input and Solution log		Soil Properties	s log		
	ength					
Piles Editor			Run P-P		Close	

b. Load soil properties file (File format see appendix 1).

1 1		II /	
BE4E - P-PPAK			- 🗆 ×
File name: C:\User	s\dell\Desktop\Model1\1.LC		Open (.LC) File
Interaction input file:	C:\Users\dell\Desktop\Model1\Inpu	ut Factors	Browse
Pile-Pile factors file:	C:\Users\dell\Desktop\Model1\A	Browse Pile-Pile and Pile-Soil fact	ors do not work
Pile-Soil factors file:		Browse with Poulos nor Rando	
Soil Properties file:	C:\Users\dell\Desktop\Model1\\$So	a	Browse
Intera	action Input and Solution log	Soil Properties lo	g
	length	Method 1 is used. C:\Users\dell\Desktop\Model1\\$Soil Number of soil layers=2 Level of each layer from surface is: Layer 1 Z = 10 Layer 2 Z = 30	
Piles Editor ress button Run P-] P	Run P-P	Close
File name: C:\Users\	dell\Desktop\Model1\1.LC		Open (.LC) File
Interaction input file:	C: \Users\dell\Desktop\Model1\Inpu	ut Factors	Browse
Pile-Pile factors file:	C:\Users\dell\Desktop\Model1\A	Braunas	
Pile-Soil factors file:		Browse Pile-Pile and Pile-Soil fac with Poulos nor Rand	
Soil Properties file:	C: \Users\dell\Desktop\Model1\\$Soi		Browse
Tatawas	tion Input and Solution log	Soil Properties	
C: \Users \dell \Desktop	p \Model 1 \Input Factors n factors approach is used liameters ngth vision essfuly s 1/1 N copied successfully run successfully successfully	Method 1 is used. C:\Users\dell\Desktop\Model1\\$Soil Number of soil layers=2 Level of each layer from surface is: Layer 1 Z = 10 Layer 2 Z = 30	- 3
Piles Editor		Run P-P	Close

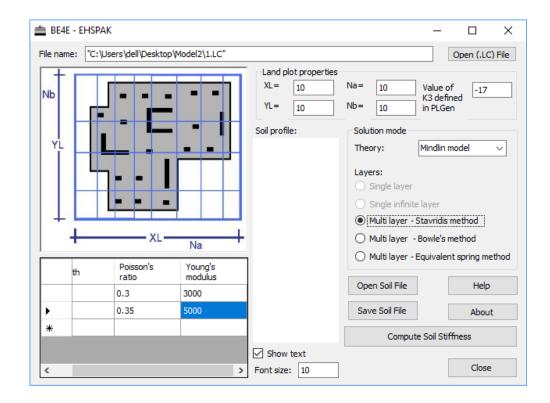

4- Close P-PPAK and go back to PLCoreMan.

5- Run PL.exe (Linear solver).

E4E-PLCo	reMar	n C:\Users\dell\Desktop\Model1\1	_	×
File View	Run	Help		
✓ LoadCa		PLView (BE mesh editor tool)		
		PT cable calculator		
		PTUpdate (Post-Tensioning tool)		
		AutoCAD exporter		
		AutoCAD extractor		
		EHSPAK		
		Р-РРАК		
		PL.EXE (Linear solver)		
Ready to start y		NLPAK (Nonlinear solver)		
Check previous		PLPost (post-processing tool)		
case 1: LoadCase		PLDesign (RC design tool)		
Checking the ex case 1: LoadCase		e or me șrunș. în each load case tolder \$run\$.		
Original in file is c	opied			

6- Show results on PLPost.

🔳 BE	4E-PLCo	reMan	C:\Users\dell\Desktop\Model1\1	_	\times
File	View	Run	Help		
🗹 Lo	adCa		PLView (BE mesh editor tool)		
			PT cable calculator		
			PTUpdate (Post-Tensioning tool)		
			AutoCAD exporter	- 1	
			AutoCAD extractor		
			EHSPAK	h	
			Р-РРАК	-1	
			PL.EXE (Linear solver)		
Boody	to start y		NLPAK (Nonlinear solver)	÷ł	
Check	previous that IRU		PLPost (post-processing tool)		î
	LoadCase		PLDesign (RC design tool)		
case 1: l Original	LoadCase in file is co	1 has : opied		_	
	se no. 1: l in\$. is con		ase1 ase: LoadCase1 will now start		
Solution	n for: Load	dCase 1	Lis completed		
Reloadin		file to	update the solution status		
			ns via the .STT files		
Ensure		NFlags	reviously solved successfully i in all .RUN files are 1 IFlag=1		~


Problem 2: This problem is 10×10 m piled raft with thickness 0.8 m supported on four piles each 0.5 m radius and two-layered elastic half space subjected to its own weight.

1- Generate Gen model.

Pite View Tools Define Help BE-files DXF Re Chr & Q Q + # # Condinates Divisions Loads 3 30 View Materials Lead Cases Model Info Points table Del Dupl. O Move Copy Array Match Wall Assembly Load Assembly Grab CG End Mid Grid Narrest Points BE Model K Cale. Run Setent E fot Draw Segments Points Beams Setent Sol Draw Segments Points Beams Move Copy Array Match Wall Assembly Load Assembly Grab CG End Mid Grid Narrest Points BE Model K Cale. Run Setent E fot Draw Segments Points Beams Move Copy Array Match Wall Assembly Grab CG End Mid Grid Narrest Points BE Model K Cale. Run Setent E fot Draw Segments Points Beams Material Concerning Data Set Data	🖬 BE4E-PLGen - [Geometry]		– 0 ×
Del Dupl. 🔹 📽 Move Copy Array Match Wall Assembly Load Assembly Grab CG End Mid Gind Næret Points BE Model K Calc. Run Select Edit Draw Segments Points Beams	🖳 File View Tools Define Help		_ 8 :
State: Aree: 10 m2 Materials of corete Materials of corete Thicknes: 0.8 m	🗋 🚔 🖪 🖾 BE-files DXF 🛛 Re Chr 🕰 🖳 💠	🇰 🔀 Coordinates Divisions Loads 🗊 3D View 🛛 Materials Load Cases Model Info Points table	
Aræ: 100 n2 Distibuted Load: 0 t/m2 Thickness: 0.8 m	Del Dupl. 🌀 🥝 Move Copy Array Match Wall Assembly	/ Load Assembly Grab CG End Mid Grid Nearest Points BE Model K Calc. Run Select Edit Draw Segments Points Beams	
	: ve vup. 🥃 🖌 Move Copy Array Match Wall Assembly	Slab: Area: 100 m2 Material: Concrete Distibuted Load 0 Um2	

- 2- Run the problem from PLGen or load it from PLCoreMan.
- 3- From PLCoreMan run EHSPAK to extract soil-soil stiffness in (PL\$MATK\$.-4).

PT cable calculator PTUpdate (Post-Tensioning tool) AutoCAD exporter AutoCAD extractor EHSPAK P-PPAK PL.EXE (Linear solver) NLPAK (Nonlinear solver) PLPost (post-processing tool)	File View	Run Help PLView (BE mesh editor tool)	 	
Ready to start y -Check previous -Ensure that IRL rase 1: LoadCase -Checking the existance or the sruns. In each load case tolder	LoadCa	PT cable calculator PTUpdate (Post-Tensioning tool) AutoCAD exporter	 	
ase 1: LoadCase PLDesign (RC design tool) -Checking the existance or the sruns, in each load case tolder	Ready to start y	P-PPAK PL.EXE (Linear solver) NLPAK (Nonlinear solver)		
	ase 1: LoadCase -Checking the ex	stance of the sruns. In each load case folder		

EHSPAK run log						_		×
Starting run \$Soil\$ file saved EHS.exe run succesfu Starting LoadCase1 1 LoadCase1 - \$Curren LoadCase1 - PR.exe r LoadCase1 - PR.exe r LoadCase1 - PL\$MATP Run ended succesfuly	Land plot propertie XL = 10 YL = 10 Soil profile:		Na = 10 Nb = 10 Solution mode Theory:	Value of K3 define in PLGen Mindlin me	ed) File		
			Laver no.1 - v=0.3 E=3000	- C	Layers: Single layer Single infinite Multi layer - : Multi layer - :	Stavridis m		
*	Close ratio 0.3 0.35	modulius 3000 5000	Layer no.2 - v=0.35 E=5000	C	O Multi layer - I Open Soil File Save Soil File Comput	Equivalent	Help About	
٢		>	Show text Font size: 10	_			Close	

4- From PLCoreMan run P-PPAK to extract pile-pile/soil stiffness in (PL\$MATK\$.-4).

E4E-PLCo	reMan	C:\Users\dell\Desktop\Model1\1	—		×
File View	Run	Help			
✓ LoadCa		PLView (BE mesh editor tool)		 	
		PT cable calculator			
		PTUpdate (Post-Tensioning tool)			
		AutoCAD exporter			
		AutoCAD extractor			
		EHSPAK			
		Р-РРАК			
		PL.EXE (Linear solver)			
		NLPAK (Nonlinear solver)			
Ready to start y Check previous		PLPost (post-processing tool)			
Ensure that IRU case 1: LoadCase		PLDesign (RC design tool)			
Checking the ex case 1: LoadCase		or the sruhs. In each load case tolder sruhs.			

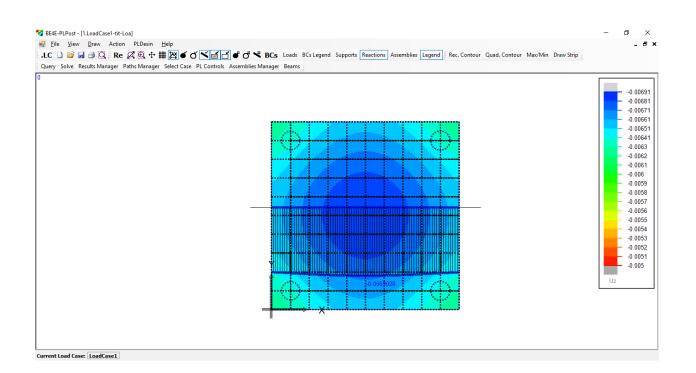
💼 BE4E - P-PPAK	_	
File name: C:\Users\dell\Desktop\Model1\1.LC	0	pen (.LC) File
Interaction input file:		Browse
Pile-Pile factors file:	Browse Pile-Pile and Pile-Soil factors do n	ot work
Pile-Soil factors file:	Browse with Poulos nor Randolph met	nods.
Soil Properties file:		Browse
Interaction Input and Solution log	Soil Properties log	
Piles Editor	Run P-P	Close

a. Load interaction input file of the problem (File different structures see appendix 1).

💼 ве4е - Р-РРАК				-		×
File name: C:\Users\dell\Desktop\Model2\1.LC					Open (.LC)) File
Interaction input file:	C: \Users \dell \Desktop \Model2 \Inpu	t Factors			Browse	<u>.</u>
Pile-Pile factors file:	C:\Users\dell\Desktop\Model2\A	Browse	Pile-Pile and Pile-Soil fa	ctors do	not work	
Pile-Soil factors file:	C: \Users \dell \Desktop \Model2\B	Browse	with Poulos nor Ran	dolph m	ethods.	
Soil Properties file:					Browse	:
Interac	tion Input and Solution log		Soil Properties	log		
	ength livision	Method 1 is				
Piles Editor			Run P-P		Close	

b. Load soil properties file (File format see appendix 1).

	1 1	1	- ,	
	BE4E - P-PPAK		-	\square X
	File name: C:\Users	\dell\Desktop\Model2\1.LC		Open (.LC) File
	Interaction input file:	Interaction input file: C:\Users\dell\Desktop\Model2\Input Factors		
	Pile-Pile factors file:	C:\Users\dell\Desktop\Model2\A	Browse Pile-Pile and Pile-Soil factors	do not work
	Pile-Soil factors file:	C:\Users\dell\Desktop\Model2\B	Browse with Poulos nor Randolph	methods.
	Soil Properties file:	C:\Users\dell\Desktop\Model2\\$Soil		Browse
	Intera	ction Input and Solution log	Soil Properties log	
		ength division	Method 1 is used. C:\Users\dell\Desktop\Model2\\$Soil Number of soil layers=2 Level of each layer from surface is: Layer 1 Z= 10 Layer 2 Z= 30	
P	Piles Editor		Run P-P	Close
c. Pres	s button Run P-	P		
	💼 BE4E - P-PPAK		-	- 🗆 X
	File name: C:\Users\c	dell\Desktop\Model2\1.LC		Open (.LC) File
	Interaction input file:	C: \Users \dell \Desktop \Model2 \Input	Factors	Browse
	Pile-Pile factors file:	C:\Users\dell\Desktop\Model2\A	Browse Pile-Pile and Pile-Soil factor	s do not work
	Pile-Soil factors file:	C:\Users\dell\Desktop\Model2\Br	Browse with Poulos nor Randolp	h methods.
	Soil Properties file:	C: \Users\dell\Desktop\Model2\\$Soil		Browse
	Interact	ion Input and Solution log	Soil Properties log	
		ngth vision nsidered ssfuly /1 copied successfuly run successfully successfully	Method 1 is used. C:\Users\dell\Desktop\Model2\\$Soil Number of soil layers=2 Level of each layer from surface is: Layer 1 Z= 10 Layer 2 Z= 30	
	Piles Editor		Run P-P	Close


5- Close P-PPAK and go back to PLCoreMan.

6- Run PL.exe (Linear solver).

E BE4E-PLCo	reMar	n C:\Users\dell\Desktop\Model1\1	-	\times
File View	Run	Help PLView (BE mesh editor tool)		
		PT cable calculator PTUpdate (Post-Tensioning tool) AutoCAD exporter AutoCAD extractor		
		EHSPAK P-PPAK		
		PL.EXE (Linear solver)		
Ready to start y		NLPAK (Nonlinear solver)		
Check previous Ensure that IRU case 1: LoadCase		PLPost (post-processing tool) PLDesign (RC design tool)		
	istance 1 has	e or the sruns. In each load case tolder		

7- Show results on PLPost.

BE4E-PLCoreMan C:\Users\dell\Desktop\Model1\1					
File	View	Run	Help		
🖂 Lo	adCa		PLView (BE mesh editor tool)	Ï	
			PT cable calculator		
			PTUpdate (Post-Tensioning tool)		
			AutoCAD exporter		
			AutoCAD extractor		
			EHSPAK		
			Р-РРАК	- 1	
			PL.EXE (Linear solver)		
Boody	to start y		NLPAK (Nonlinear solver)	ł	
Check	previous that IRU		PLPost (post-processing tool)		î
	LoadCase		PLDesign (RC design tool)		
case 1:	ing the ex LoadCase in file is co	1 has	e or the șrunș. în each load case tolder șrunș.	_	
load ca	se no. 1: l	LoadCa			
			ise: LoadCase1 will now start Lis completed		
	ition is fin		is completed		
			update the solution status		
Check previous solutions via the .STT files					
case no.1: LoadCase1 previously solved successfully Ensure that IRUNFlags in all .RUN files are 1					
	LoadCase				~

<u>Appendix 1</u> <u>Input files Structure</u>

input mes structure
1- Interaction input file:
- 0/1/2 0: if load transfer approach, 1: if elastic approach, 2: if user input interaction approach.
- N _p Total number of piles.
- r ₁
r ₂
. \rightarrow Radius for each pile.
•
· · ·
\mathbf{r}_{Np}
L2,d2
Length and number of divisions for each pile.
$\langle Note: Load transfer approach method, piles have the same length and same divisions. \rangle$
i.e. this part will be only one line in this case (L, d).
L_{Np}, d_{Np}
- F ₁
\mathbf{F}_2
. Factors for including or neglect friction or end bearing (see Figure A).
$(m = \sum d(i) + 2N_p) i = 1 \rightarrow N_p$
. (Note: These factors are in cases load transfer approach and elastic approach only.)
$\mathbf{F}_{\mathbf{m}}$
$-\mathbf{E}_{\mathbf{p}1}$
E_{p2}
Young's modulus for each pile.
E _{pNp}
- 0/1/2 0: for including P-P interactions only, 1: for including P-P and S-S interactions only
(neglecting P-S interactions), 2: for including all interactions (P-P, S-S, P-S).
- Layering method 1/2/3.1: Average E, 2: Equivalent E, 3: Poulos and Lee – (Modified E).

1.1. <u>Pile-pile factors file (α):</u>

- $1/2/3$ 1: U _{ii} read from this file, 2: U _{ii} calculated from load transfer approach, 3: U _{ii} calculated
from elastic approach.
- U1
U ₂
U_{ii} for each pile. (Exist only in case of U_{ii} read from this file" i.e. the first line is 1").
O_{11} for each price (Exist only in case of O_{11} read from this file (i.e. the first file is 1).
•
U_{Np}
- α ₁₁
α ₁₂
. $[\alpha]_{Np*Np}$ pile-pile interaction factors matrix as % from U _{ii} written as a one column.
•
•
$\alpha_{(Np*Np)}$

1.2. <u>Pile-soil factors file (β):</u>

- $1/2$ 1: U _{ii} read from this file, 2: U _{ii} calculated from EHSPAK.
- U ₁
U ₂
U_{ii} for each soil cell. (Exist only in case of U_{ii} read from this file "i.e. the first line is 1").
U_{Np}
- β 11
β12
[β] Np*Nhs pile-soil interaction factors matrix as % from U _{ii} written as a one column
$(row_1, row_2, \dots, row_{Np})$. (Note: N _{hs} is the total number of half space soil cells.)
$\beta_{(Np*Nhs)}$

<u>2- Soil properties file (This file already exist in case of running EHSPAK before P-PPAK.</u> <u>Its name is \$soil\$ @ PLPAK folder):</u>

- Nlayers, Idum, Idum Total number of soil layers, Any two dummy integer numbers.				
-Idum, Idum Any two dummy integer numbers.				
$-H_L, E_s, v_s$				
HL, Es, vs				
H _L ,E _s , v _s Layer soil modulus, Layer's poison's ratio, Layer depth from soil top surface.				
H_{L}, E_{s}, v_{s}				

Friction or End bearing factors

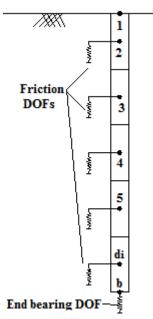


Figure A: Pile (i) friction and end bearing DOFs.

DOF 1: for connecting with the raft.

DOFs (2 to d_i): Friction DOFs.

DOF b: End bearing DOF.

Each pile has (d_i(number of divisions)+2(top and bottom)) DOFs.

All piles has m DOFs = $\sum d(i) + 2N_p$.

Several examples for write one pile factors in Interaction input file:

1	0	1
1	0	1
1	0	1
1	0	1
1	0	1
1	0	1
0	1	1
Friction pile(i) factors	End bearing pile(i) factors	Friction and End bearing pile(i) factors

<u>Appendix 2</u> <u>Input files problem 1&2 as example</u>

1- Interaction input file:

Load transfer approach	Elastic approach	Field measurements input factors
0	1	2
4	4	4
0.5		0.5
0.5		0.5
0.5 0.5		0.5 0.5
10 5		0.5 10 5
10 5		10 5
1		10 5
1		10 5
1		100000
1		100000
1		100000
1		100000
1	1	2 (must be 0 in problem 1)
1	1	(could be 1 or 2 in problem 2)
1	1	1 \leftarrow could be 1, 2 or 3
1	1	
1	1	
1	1	
1	1	
1	1	
1	1	
1	1	
1	1	
1	1	
1	1	
1	1	
1	1	
1	1	
1	1	
1		
1	1	
100000 100000	1	
100000	1	
100000	100000	
0 (must be 0 in problem 1)	100000	
(could be 1 or 2 in problem 2)	100000	
$1 \leftarrow \text{could be } 1, 2 \text{ or } 3$	100000	
	2 (must be 0 in problem 1)	
	(could be 1 or 2 in problem 2)	
	1 \leftarrow could be 1, 2 or 3	

Read U _{ii} from this file	Load transfer approach	Elastic approach
1	2	3
0.002	1	1
0.002	0.25	0.25
0.002	0.5	0.5
0.002	0.25	0.25
1	0.25	0.25
0.25	1	1
0.5	0.25	0.25
0.25	0.5	0.5
0.25	0.5	0.5
1	0.25	0.25
0.25	1	1
0.5	0.25	0.25
0.5	0.25	0.25
0.25	0.5	0.5
1	0.25	0.25
0.25	1	1
0.25		
0.5		
0.25		
$\frac{1}{2 - p^2} + \frac{1}{2 - p^2$		

2- Pile-pile factors file (α):

3- Pile-soil factors file (β):

Read U _{ii} from this file	EHSPAK
1 0.0035 I =1 0.0033 I =2 0.0032 0.0035 0.0034 I=100 (EHS discritization 10×10) 1 I=1, J=1 0.25 I=1, J=2 0.5 I=1, J=3 0.25	EHSPAK 2 1 I=1, J=1 0.25 I=1, J=2 0.5 I=1, J=3 0.25
0.15 I=4, J=99 1 I=4, J=100	

4- Soil properties file (\$soil\$):

Problem 1	Problem 2
2 Any no. Any no.	2 17 12
Any no. Any no.	10 10
10 3000 0.3	10 3000 0.3
30 5000 0.35	30 5000 0.35
Any no. Any no.	10 10

Getting Help

The BE4E.com customer support team is always welcoming problems and suggestions of registered customers. Just send an e-mail including your questions, or your model together with your questions to: plpak@be4e.com

Also check our site news at <u>www.plpak.com</u> regularly for *Problems and Solutions* section and the *Frequently Asked Questions* section